
Plug & Play Garbage
Collection with

MMTk

Matt Valentine-House (eightbitraptor).

Senior Developer, Ruby & Rails Infrastructure Team, Shopify.

CRuby Committer since March 2023.

1995

Ruby 0.95 released

562

562 14100

struct RVALUE

typedef struct RVALUE {
 union {
 struct {
 UINT flag; /* always 0 for freed obj */
 struct RVALUE *next;
 } free;
 // enumerate Ruby object types

 } as;
} RVALUE;

struct RVALUE

typedef struct RVALUE {
 union {
 struct {
 UINT flag; /* always 0 for freed obj */
 struct RVALUE *next;
 } free;
 // enumerate Ruby object types

 } as;
} RVALUE;

RVALUE *freelist

RVALUE *freelist

RVALUE *freelist

John McCarthy
Massachusetts Institute of Technology

“Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part 1”

Communications of the ACM, Volume 3, Issue 4. April 1960

Root 1

Root 2

Root 2

Freelist

M

M

M

Root 1

Root 2

Root 2

Freelist

M

M

M

M

M

M

M M

M M

M

Root 1

Root 2

Root 2

Freelist

M

M

M

M

M

M

M M

M M

M

Root 1

Root 2

Root 2

Freelist

gc_mark(obj)
 register RVALUE *obj;
{
 Top:
 if (obj == Qnil) return; /* nil not marked */
 if (FIXNUM_P(obj)) return; /* fixnum not marked */
 if (obj->as.basic.flags == 0) return; /* free cell */
 if (obj->as.basic.flags & FL_MARK) return; /* marked */
 obj->as.basic.flags |= FL_MARK;
 switch (obj->as.basic.flags & T_MASK) {
 case T_NIL:
 case T_FIXNUM:
 Bug("gc_mark() called for broken object");
 break;
 /// ... snip...
}

gc_sweep()
{
 // ... snip

 while (p < pend) {
 if (!(p->as.basic.flags & FL_MARK)) {
 if (p->as.basic.flags) obj_free(p);
 p->as.free.flag = 0;
 p->as.free.next = nfreelist;
 nfreelist = p;
 n++;
 }
 else
 RBASIC(p)->flags &= ~FL_MARK;
 p++;
 }
 // ... snip

}

gc_sweep()
{
 // ... snip

 while (p < pend) {
 if (!(p->as.basic.flags & FL_MARK)) {
 if (p->as.basic.flags) obj_free(p);
 p->as.free.flag = 0;
 p->as.free.next = nfreelist;
 nfreelist = p;
 n++;
 }
 else
 RBASIC(p)->flags &= ~FL_MARK;
 p++;
 }
 // ... snip

}

2011

Ruby 1.9.3 introduced Lazy
Sweeping

Time

Mutator Garbage CollectionKey:

Time

Mutator SweepingMarkingKey:

😊
Lower p99 response times.

Fewer slow requests for users.

😞
Lower throughput.

Fewer total requests per second.

2013

Ruby 2.1 introduced
Generational GC

“ ”– David Ungar
University of California, 1984

Measurement of Object lifetimes proved that young

objects die young and old objects continue to live

RGenGC - 2 generations: Young and Old

Two phase Marking:

Minor - only young objects

Major - all objects

Minor mark by default, Major when Old object count doubles

RGenGC - 2 generations: Young and Old

Two phase Marking:

Minor - only young objects

Major - all objects

Minor mark by default, Major when Old object count doubles

RGenGC - 2 generations: Young and Old

Two phase Marking:

Minor - only young objects

Major - all objects

Minor mark by default, Major when Old object count doubles

Young Old

1

6

2

3

5

4

11

7

9

8

10

12

Young Old

1

6

2

3

5

4

11

7

9

8

10

12

reference added
from old object
to young

Young Old

1

6

2

3

5

4

11

7 8

10

12

Remembered Set

9

9

RGenGC introduced Write Barriers.

C extension objects are "Write Barrier Unprotected".

Unprotected objects can never be old.

RGenGC backwards compatible, at expense of performance.

RGenGC introduced Write Barriers.

C extension objects are "Write Barrier Unprotected".

Unprotected objects can never be old.

RGenGC backwards compatible, at expense of performance.

RGenGC introduced Write Barriers.

C extension objects are "Write Barrier Unprotected".

Unprotected objects can never be old.

RGenGC backwards compatible, at expense of performance.

RGenGC introduced Write Barriers.

C extension objects are "Write Barrier Unprotected".

Unprotected objects can never be old.

RGenGC backwards compatible, at expense of performance.

RGenGC introduced Write Barriers.

C extension objects are "Write Barrier Unprotected".

Unprotected objects can never be old.

RGenGC backwards compatible, at expense of performance.

Ruby's Generational GC is not evacuating.

Evacuation allows greater performance tuning.

Age:
0

Young object space Old object space

Young object space Old object space

Age:
1

Ruby's Generational GC is not evacuating.

Evacuation allows greater performance tuning.

2014

Ruby 2.2 introduced
Incremental Marking

Time

Mutator SweepingMinor MarkKey: Major Mark

Reference added to already marked object

Write-Barrier recolours object to trigger re-marking

2019

Ruby 2.7 introduced
Compaction

First time Objects can move.

2-Finger compaction, from 1960's LISP.

Fits Ruby's memory layout.

First time Objects can move.

2-Finger compaction, from 1960's LISP.

Fits Ruby's memory layout.

First time Objects can move.

2-Finger compaction, from 1960's LISP.

Fits Ruby's memory layout.

Performance Improvements from:

Smaller heap.

Better locality.

Better Copy-on-write performance.

Extension object pinned by default, explicit opt-in.

Performance Improvements from:

Smaller heap.

Better locality.

Better Copy-on-write performance.

Extension object pinned by default, explicit opt-in.

Performance Improvements from:

Smaller heap.

Better locality.

Better Copy-on-write performance.

Extension object pinned by default, explicit opt-in.

static void
cont_compact(void *ptr)
{
 rb_context_t *cont = ptr;

 if (cont->self) {
 cont->self = rb_gc_location(cont->self);
 }
 cont->value = rb_gc_location(cont->value);
 rb_execution_context_update(&cont->saved_ec);
}

2020

Ruby 3.0 introduced
Automatic Compaction

Ruby 2.7: Manual compaction, 3.0: Automatic compaction

Empty slots filled when swept.

Objects can be modified during sweeping.

Ruby 2.7: Manual compaction, 3.0: Automatic compaction

Empty slots filled when swept.

Objects can be modified during sweeping.

Ruby 2.7: Manual compaction, 3.0: Automatic compaction

Empty slots filled when swept.

Objects can be modified during sweeping.

Class

Class Class Class Class

Class

Class Class Class Class

Class

Class Class ClassClass

?

Class Class Class

Class

Class

Assumptions made about GC that no longer held.

Solved with read barriers.

Auto-compaction reduced GC peformance.

Assumptions made about GC that no longer held.

Solved with read barriers.

Auto-compaction reduced GC peformance.

Assumptions made about GC that no longer held.

Solved with read barriers.

Auto-compaction reduced GC peformance.

2022

Ruby 3.2 introduced Variable
Width Allocation

Improved mutator performance.

Improved data locality.

fewer external allocations.

Improved mutator performance.

Improved data locality.

fewer external allocations.

Improved mutator performance.

Improved data locality.

fewer external allocations.

2023?

“ ”–Matt Valentine-House
RubyKaigi 2023

Ruby ships with an incremental, non-copying generation

mark & sweep Garbage collector with optional

compaction

Grown organically over 29 years.

Worked around assumptions, and made its own.

This is fine.

Grown organically over 29 years.

Worked around assumptions, and made its own.

This is fine.

Grown organically over 29 years.

Worked around assumptions, and made its own.

This is fine.

“ ”–Stephen Blackburn, 2011
Australian National University

The alternative is a well worn path that starts down the

easy road of reference counting or conservative GC and

ends with a system that has a good compiler but is

hamstrung by poor memory performance.

Rubys GC is 30 years old.

Core algorithms are >70 years old.

~6% of the entire Ruby core codebase.

Very hard to change.

Weak abstraction boundaries.

Rubys GC is 30 years old.

Core algorithms are >70 years old.

~6% of the entire Ruby core codebase.

Very hard to change.

Weak abstraction boundaries.

Rubys GC is 30 years old.

Core algorithms are >70 years old.

~6% of the entire Ruby core codebase.

Very hard to change.

Weak abstraction boundaries.

Rubys GC is 30 years old.

Core algorithms are >70 years old.

~6% of the entire Ruby core codebase.

Very hard to change.

Weak abstraction boundaries.

Rubys GC is 30 years old.

Core algorithms are >70 years old.

~6% of the entire Ruby core codebase.

Very hard to change.

Weak abstraction boundaries.

Stephen M. Blackburn
Australian National University

“Immix: A Mark-Region Garbage Collector with
Space Efficiency, Fast Collection, and Mutator Performance”

Kathryn S. McKinley
The University of Texas at Austin

presented at the ACM SIGPLAN Conference on Programming Language Design and
Implementation: PLDI 2008

Allocation Identification Reclaimation

Free-List

Bump Pointer

Allocation Identification Reclaimation

Free-List

Bump Pointer

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Sweep

Evacuation

Compaction

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Sweep

Evacuation

Compaction

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Sweep

Evacuation

Compaction

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Sweep

Evacuation

Compaction

Mark & Sweep

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Sweep

Evacuation

Compaction

Mark-Compact

Allocation Identification Reclaimation

Free-List

Bump Pointer

Tracing
(Implicit)

Reference Counting
(Explicit)

Sweep

Evacuation

Compaction

Semi-Space

Allocation Identification Reclaimation

Each algorithm has different performance characteristics.

Modern GC's: G1, Shenandoah, ZGC et al. are composed from

canonical algorithms.

Combined with generations, concurrency and parallelism to achieve

high performance.

Each algorithm has different performance characteristics.

Modern GC's: G1, Shenandoah, ZGC et al. are composed from

canonical algorithms.

Combined with generations, concurrency and parallelism to achieve

high performance.

Each algorithm has different performance characteristics.

Modern GC's: G1, Shenandoah, ZGC et al. are composed from

canonical algorithms.

Combined with generations, concurrency and parallelism to

achieve high performance.

Immix was a new canonical collector.

It formalised Mark-Region as a category of collectors.

Outperforms existing canonical collectors by 7-25% on average.

Immix was a new canonical collector.

It formalised Mark-Region as a category of collectors.

Outperforms existing canonical collectors by 7-25% on average.

Immix was a new canonical collector.

It formalised Mark-Region as a category of collectors.

Outperforms existing canonical collectors by 7-25% on average.

Inko, and Scala Native

Glasgow Haskell Compiler (GHC).

Rubinius

Inko, and Scala Native

Glasgow Haskell Compiler (GHC).

Rubinius

Inko, and Scala Native

Glasgow Haskell Compiler (GHC).

Rubinius

Stephen M. Blackburn
Australian National University

“Low-Latency, High-Throughput Garbage Collection”

Kathryn S. McKinley
Google

presented at the ACM SIGPLAN Conference on Programming Language Design and
Implementation: PLDI 2022

Wenyu Zhao
Australian National University

LXR is a new high-level GC algorithm.

Adds reference counting, and heavy optimisations, to Immix.

Significantly outperforms high-profile production GC's

LXR is a new high-level GC algorithm.

Adds reference counting, and heavy optimisations, to Immix.

Significantly outperforms high-profile production GC's

LXR is a new high-level GC algorithm.

Adds reference counting, and heavy optimisations, to Immix.

Significantly outperforms high-profile production GC's

Geometric Mean of 99.99% Latency, and throughput relative to G1, for 4
collectors in three heap sizes

99.99% Latency/G1 Time/G1

Heap size G1 LXR Shen ZGC G1 LXR Shen ZGC
1.3x 1.00 0.72 1.51 - 1.00 0.97 1.77 -
2x 1.00 0.92 2.54 - 1.00 0.96 0.96 -
6x 1.00 0.85 1.41 1.44 1.00 1.01 1.09 1.26

Geometric Mean of 99.99% Latency, and throughput relative to G1, for 4
collectors in three heap sizes

99.99% Latency/G1 Time/G1

Heap size G1 LXR Shen ZGC G1 LXR Shen ZGC
1.3x 1.00 0.72 1.51 - 1.00 0.97 1.77 -
2x 1.00 0.92 2.54 - 1.00 0.96 0.96 -
6x 1.00 0.85 1.41 1.44 1.00 1.01 1.09 1.26

Geometric Mean of 99.99% Latency, and throughput relative to G1, for 4
collectors in three heap sizes

99.99% Latency/G1 Time/G1

Heap size G1 LXR Shen ZGC G1 LXR Shen ZGC
1.3x 1.00 0.72 1.51 - 1.00 0.97 1.77 -
2x 1.00 0.92 2.54 - 1.00 0.96 0.96 -
6x 1.00 0.85 1.41 1.44 1.00 1.01 1.09 1.26

MMTk - Part of JikesRVM, from 2004.

Modular design with clear abstractions.

Rust rewrite in 2017, to be runtime agnostic.

MMTk - Part of JikesRVM, from 2004.

Modular design with clear abstractions.

Rust rewrite in 2017, to be runtime agnostic.

MMTk - Part of JikesRVM, from 2004.

Modular design with clear abstractions.

Rust rewrite in 2017, to be runtime agnostic.

OpenJDK

V8

JikesRVM

Current In-Progress

OpenJDK

V8

JikesRVM

Current In-Progress

OpenJDK

V8

JikesRVM

Current In-Progress

OpenJDK

V8

JikesRVM

Julia

GHC

Ruby

Current In-Progress

OpenJDK

V8

JikesRVM

Julia

GHC

Ruby

Current In-Progress

OpenJDK

V8

JikesRVM

Julia

GHC

Ruby

Current In-Progress

MMTk Core Ruby

MMTk Core Ruby

Binding

MMTk Core Language VM

mmtk-ruby

MMTk Core Rubymmtk.h

mmtk-ruby

MMTk Core mmtk.h Ruby

Shopify/ruby-mmtk-builder

Not production ready.

Linux only, Mac soon, Windows unknown.

MarkSweep runs Rails, Immix does not.

Performance.

Not production ready.

Linux only, Mac soon, Windows unknown.

MarkSweep runs Rails, Immix does not.

Performance.

Not production ready.

Linux only, Mac soon, Windows unknown.

MarkSweep runs Rails, Immix does not.

Performance.

Not production ready.

Linux only, Mac soon, Windows unknown.

MarkSweep runs Rails, Immix does not.

Performance.

Where do we go from here?

Image by macrovector on Freepik

#if USE_MMTK
 if (rb_mmtk_enabled_p()) {
 // When using MMTk, we pass the observed
 // ID directly as the `obj` parameter.
 saved.objid = obj;
 } else {
#endif
 saved.objid = rb_obj_id(obj);
#if USE_MMTK
 }
#endif

Complex, error-prone code

Makes current Ruby GC harder
to change.

📉Negatives📈Positives

Complex, error-prone code

Makes current Ruby GC harder
to change.

📉Negatives📈Positives

Allowed us to get up and
running quickly

Helped us to discover areas that
we need to change

Complex, error-prone code

Makes current Ruby GC harder
to change.

📉Negatives📈Positives

Allowed us to get up and
running quickly

Helped us to discover areas
that we need to change

Complex, error-prone code

Makes current Ruby GC harder
to change.

📉Negatives📈Positives

V8 & GHC built a GC Interface.

Same interface used by internal GC & MMTk.

We are facing this choice currently in Ruby.

What if we didn't stop with MMTk?

V8 & GHC built a GC Interface.

Same interface used by internal GC & MMTk.

We are facing this choice currently in Ruby.

What if we didn't stop with MMTk?

V8 & GHC built a GC Interface.

Same interface used by internal GC & MMTk.

We are facing this choice currently in Ruby.

What if we didn't stop with MMTk?

V8 & GHC built a GC Interface.

Same interface used by internal GC & MMTk.

We are facing this choice currently in Ruby.

What if we didn't stop with MMTk?

Can we build a generic

memory management

interface for Ruby?

Image by photoroyalty on Freepik

GC library

MMTk - Latest GC research

Easy GC split testing

📉Questions📈Benefits

Ruby

RubyGC

MMTk

???

???

GC library

MMTk - Latest GC research

Easy GC split testing

📉Questions📈Benefits

Ruby

MMTk

Shenandoah

ZGC

LXR

???

GC library

MMTk - Latest GC research

Easy GC split testing

📉Questions📈Benefits

Ruby

RubyGC

RubyGC-prime

Ruby

RubyGC

MMTk

???

???

GC library

MMTk - Latest GC research

Easy GC split testing

📉Questions📈Benefits

GC library

MMTk - Latest GC research

Easy GC split testing

C extensions

Maintenance burden

Performance penalties

📉Questions📈Benefits

GC library

MMTk - Latest GC research

Easy GC split testing

C extensions

Maintenance burden

Performance penalties

📉Questions📈Benefits

C extensions

Maintenance burden

Performance penalties

GC library

MMTk - Latest GC research

Easy GC split testing

📉Questions📈Benefits

GC is not a solved problem. Advances

in memory management research

are happening all the time.

We have a real opportunity to ensure

that Ruby's memory management

modern and highly performant.

Image by photoroyalty on Freepik

Thanks.
References & Acknowledgements:

bit.ly/mmtk-rubykaigi-2023

http://bit.ly/mmtk-rubykaigi-2023

