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struct RVALUE

typedef struct RVALUE { 
    union { 
    struct { 
        UINT flag;      /* always 0 for freed obj */ 
        struct RVALUE *next; 
    } free; 
 // enumerate Ruby object types 
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John McCarthy 
Massachusetts Institute of Technology 

“Recursive Functions of Symbolic Expressions and Their 
Computation by Machine, Part 1” 

Communications of the ACM, Volume 3, Issue 4. April 1960
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gc_mark(obj) 
    register RVALUE *obj; 
{ 
  Top: 
    if (obj == Qnil) return;    /* nil not marked */ 
    if (FIXNUM_P(obj)) return;  /* fixnum not marked */ 
    if (obj->as.basic.flags == 0) return; /* free cell */ 
    if (obj->as.basic.flags & FL_MARK) return; /* marked */ 
    obj->as.basic.flags |= FL_MARK; 
    switch (obj->as.basic.flags & T_MASK) { 
      case T_NIL: 
      case T_FIXNUM: 
    Bug("gc_mark() called for broken object"); 
    break; 
    /// ... snip... 
}



gc_sweep() 
{ 
  // ... snip 

    while (p < pend) { 
        if (!(p->as.basic.flags & FL_MARK)) { 
        if (p->as.basic.flags) obj_free(p); 
        p->as.free.flag = 0; 
        p->as.free.next = nfreelist; 
        nfreelist = p; 
        n++; 
        } 
        else 
        RBASIC(p)->flags &= ~FL_MARK; 
        p++; 
    } 
 // ... snip 

}



gc_sweep() 
{ 
  // ... snip 

    while (p < pend) { 
        if (!(p->as.basic.flags & FL_MARK)) { 
        if (p->as.basic.flags) obj_free(p); 
        p->as.free.flag = 0; 
        p->as.free.next = nfreelist; 
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2011

Ruby 1.9.3 introduced Lazy 
Sweeping
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😊
Lower p99 response times. 

Fewer slow requests for users.

😞
Lower throughput. 

Fewer total requests per second.



2013

Ruby 2.1 introduced 
Generational GC



“ ”– David Ungar 
University of California,  1984 

Measurement of Object lifetimes proved that young 

objects die young and old objects continue to live
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Minor mark by default, Major when Old object count doubles
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RGenGC introduced Write Barriers. 

C extension objects are "Write Barrier Unprotected". 

Unprotected objects can never be old. 

RGenGC backwards compatible, at expense of performance.
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Ruby's Generational GC is not evacuating. 

Evacuation allows greater performance tuning.



2014

Ruby 2.2 introduced 
Incremental Marking



Time

Mutator SweepingMinor MarkKey: Major Mark











Reference added to already marked object



Write-Barrier recolours object to trigger re-marking



2019

Ruby 2.7 introduced 
Compaction



First time Objects can move. 
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Extension object pinned by default, explicit opt-in.
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static void 
cont_compact(void *ptr) 
{ 
    rb_context_t *cont = ptr; 

    if (cont->self) { 
        cont->self = rb_gc_location(cont->self); 
    } 
    cont->value = rb_gc_location(cont->value); 
    rb_execution_context_update(&cont->saved_ec); 
} 



2020

Ruby 3.0 introduced 
Automatic Compaction



Ruby 2.7: Manual compaction, 3.0: Automatic compaction 

Empty slots filled when swept. 

Objects can be modified during sweeping.
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Assumptions made about GC that no longer held. 

Solved with read barriers. 

Auto-compaction reduced GC peformance.
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2022

Ruby 3.2 introduced Variable 
Width Allocation
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2023?



“ ”–Matt Valentine-House 
RubyKaigi 2023

Ruby ships with an incremental, non-copying generation 

mark & sweep Garbage collector with optional 

compaction
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“ ”–Stephen  Blackburn, 2011 
Australian National University

The alternative is a well worn path that starts down the 

easy road of reference counting or conservative GC and 

ends with a system that has a good compiler but is 

hamstrung by poor memory performance.
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Stephen M. Blackburn 
Australian National University

“Immix: A Mark-Region Garbage Collector with  
Space Efficiency, Fast Collection, and Mutator Performance” 

Kathryn S. McKinley 
The University of Texas at Austin

presented at the ACM SIGPLAN Conference on Programming Language Design and 
Implementation: PLDI 2008
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Modern GC's: G1, Shenandoah, ZGC et al. are composed from 

canonical algorithms. 

Combined with generations, concurrency and parallelism to achieve 

high performance.
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Stephen M. Blackburn 
Australian National University

“Low-Latency, High-Throughput Garbage Collection” 

Kathryn S. McKinley 
Google

presented at the ACM SIGPLAN Conference on Programming Language Design and 
Implementation: PLDI 2022

Wenyu Zhao 
Australian National University
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Geometric Mean of 99.99% Latency, and throughput relative to G1, for 4 
collectors in three heap sizes

99.99% Latency/G1 Time/G1

Heap size G1 LXR Shen ZGC G1 LXR Shen ZGC
1.3x 1.00 0.72 1.51 - 1.00 0.97 1.77 -
2x 1.00 0.92 2.54 - 1.00 0.96 0.96 -
6x 1.00 0.85 1.41 1.44 1.00 1.01 1.09 1.26
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MMTk Core Language VM

mmtk-ruby



MMTk Core Rubymmtk.h

mmtk-ruby



MMTk Core mmtk.h Ruby



Shopify/ruby-mmtk-builder
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Where do we go from here?

Image by macrovector on Freepik



#if USE_MMTK 
    if (rb_mmtk_enabled_p()) { 
        // When using MMTk, we pass the observed 
        // ID directly as the `obj` parameter. 
        saved.objid = obj; 
    } else { 
#endif 
    saved.objid = rb_obj_id(obj); 
#if USE_MMTK 
    } 
#endif
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We are facing this choice currently in Ruby. 
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Can we build a generic 

memory management 

interface for Ruby?
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GC is not a solved problem. Advances 

in memory management research 

are happening all the time. 

We have a real opportunity to ensure 

that Ruby's memory management 

modern and highly performant.

Image by photoroyalty on Freepik



Thanks.
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