Strings:
Interpolation,
Optimisation
& Bugs

HEBZ A, [FNEW, FFIEWLWWNT
ER AN

SH. RHEEFBXREBTHLWTT
K BRI LU TWET L1,
TH, BRBEBNS, lLFIEXTE
FTIEFBVWTTL, EVWSZET,
SHIEREBEBTEELLEXT, £BU
<HEVWLET !

Thanks for having me here to speak.
It's a real pleasure to be in Okinawa
amongst such wonderful company
and I'm privileged to be able to talk
about a fun little performance
regression that we found in string
interpolation, and fixed for Ruby 3.3

Matt Valentine-House

Senior Developer, Ruby Infrastructure
) shopify
@ e ubysocial (@)

My name is Matt. | am known as
eightbitraptor on the internet. I'm a
full time Ruby Core committer and |
work for Shopify in the Ruby
Infrastructure team.

mailto:eightbitraptor@ruby.social

This talk is related to variable width
allocation, A feature my team and |
developed to improve the
performance of Ruby by changing
how memory was laid out. We
shipped the first version for Ruby
3.2.

Variable Width Allocation

We continued to work on it during
the development cycle of Ruby 3.3
to improve the performance, and
clean up the implementation and we
noticed a performance regression
for certain types of string
interpolation.

| set out to work out where that
regression had come from, and
whether it was related to our
changes.

I'm not going to talk about VWA in
depth in this talk, as we've already
covered it at previous Ruby Kaigi's

80 160

320

It is important to understand how
Ruby uses memory for this talk
though, so I'm just going to give a
quick summary of object allocation.

When you create a Ruby object, it
gets allocated in a specific part of
the heap, called a size pool, based
on the size of the object.

the smallest size pool holds objects
that are up to 40 bytes in size and
the thresholds double from there.
The largest size pool holds objects
up to 640 bytes, and anything
bigger than that is treated
separately.

80 160

320

"Hi RubyKaigi"

when we create an object, Ruby
chooses an appropriate size pool
depending on the total size of that
object and allocates it.

An object that fits completely within
the slots of its respective size pool
it's called an "embedded" object.

40 80 160 320

"Hi RubyKaigi"

But, Objects are mutable, and can
be resized after allocation.

40 80 160 320

"Hi RubyKaigi"

str.gsub! "RubyKaigi", "Everyone. How are You?"

For instance, if we substitute part of
the string for something longer
using gsub! The receiver object will
be modified directly. Potentially
causing it to no longer fit in the size
pool to which it was allocated

"Hi Everyone. How are You?"

40 80 160 320

str.gsub! "RubyKaigi", "Everyone. How are You?"

In this case, Ruby allocates a chunk
of memory somewhere else outside
of it's heap, its not really important
where for now, and it creates a
pointer from the original object in
the size pool, out to the new
memory. This object is now referred
to as extended rather than
embedded, because it doesn't fit
fully in it's size pool anymore.

require 'objspace'
my_str = 'Hello, Friends. How are we all today?'
puts ObjectSpace.dump(my_str)

We can inspect vm specific
information about objects using the
Objectspace dump api, and now
this will show you information now
about the object size, which pool
it's been allocated in and whether
it's embedded or not.

So when we run code this to
inspect a string.

"address" :"0x103ab7f80",

"type":"STRING",
"shape_id":12,
"slot_size":80,
"class":"0x103a%edad",
"frozen":true,
"embedded":true,
"bytesize":36,

"value":"Hello, Friends.

"coderange":"7bit",

"memsize":80,

"flags": {
"wb_protected":true

How are we all today?",

We get this. We can see lots of
information about this string object
- it's address, whether it's frozen or
not, whether it's write barrier
protected

"address":"0x103ab7f80",

"type":"STRING",
"shape_id":12,
"slot_size":80,
"class":"0x103a%edad",
"frozen":true,
"embedded": true,
"bytesize":36,

"value":"Hello, Friends.

"coderange":"7bit",

"memsize":80,

“flags": {
"wb_protected":true

How are we all today?",

And also the embedded status, this
string is clearly embedded

"address" :"0x103ab7f80",

"type":"STRING",
"shape_id":12,
"slot_size":80,
"class":"0x103a%edad",
"frozen":true,
"embedded" : true,
"bytesize":36,

"value":"Hello, Friends.

"coderange":"7bit",

"memsize":80,

"flags": {
"wb_protected":true

How are we all today?",

And it's in the 80 byte size pool

"address":"0x103ab7f80",

"type":"STRING",
"shape_id":12,
"slot_size":80,
"class":"0x103a%edad",
"frozen":true,
"embedded": true,
"bytesize":36,

"value":"Hello, Friends.

"coderange":"7bit",

"memsize":80,

“flags": {
"wb_protected":true

How are we all today?",

And the bitesize of the string, that is
the amount of memory used by the
actual string data, which is 36
bytes.

Now. Given that the string is only 36
bytes long, we need to explain why
this has been allocated in the 80
byte size pool instead of the 40 byte

36<40 one.
Every Ruby object is prefixed with
16 bytes of metadata. This
"% byies e e metadata contains some internal
status flags for the object, as well
16 +36+1=53

as information about it's Klass.

And in Ruby strings are null
terminated, so we have to add 1 for
the terminator,

This gives us a total of 53 bytes,
making it too big for the 40 byte
bucket, so an 80 byte embedded
allocation makes perfect sense.

So that's all for our background.

short_str "hello"

long_str "Friends. How are we all today?"

"#{short_str}, #{long_str}"

new_string

At some point while | was testing
the Variable Width Allocation
patches, | had some code that
looked like this. It allocates a new
string, which is built from two other
strings combined together using

string interpolation and inserts it
into a local variable.

| wanted to make sure that all these
strings are being allocated in the
right place so | inspected them
using the objectspace api.

And this is what | got.

short_str = "hello"

{"embedded":true, "slot_size":40, "bytesize":5
"value":"hello"}

First string looks good

long_str = "Friends. How are we all today?"

new_string = "#{short_str}, #{long_str}"

short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5,
"value":"hello"}

long_str = "Friends. How are we all today?"

new_string = "#{short_str}, #{long_str}"

it's embedded

short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5
"value":"hello"}

long_str = "Friends. How are we all today?"

new_string = "#{short_str}, #{long_str}"

In the 40 byte bucket, which makes
sense as it's bytesize is 5

remember 5 + 16 is 21, plus the null
terminator makes the total size 22
bytes

second string also looks good

short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5, L
"value":"hello"} -
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29,)8
"value":"Friends. How are we all today?"} o
new_string = "#{short_str}, #{long_str}"
14!
it's embedded
short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5, -
"value":"hello"} -
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29, -

"value":"Friends. How are we all today?"}

new_string = "#{short_str}, #{long_str}"

short_str = "hello"

{"embedded":true, "slot_size":40, "bytesize":5,

in the 80 byte bucket.

"value":"hello"}
again bytesize of 29, all the extra
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29, L Stuﬁ makeS 46 bytes
"value":"Friends. How are we all today?"} =
new_string = "#{short_str}, #{long_str}"
third string, is not what | expected
short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5, ! to See.
"value":"hello"} —
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29, -
"value":"Friends. How are we all today?"} =
new_string = "#{short_str}, #{long_str}"
{"bytesize":36, "slot_size":40, ';Fi?‘

"value":"hello, Friends. How are we all today?"}

short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5, -
"value":"hello"} -
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29, =
"value":"Friends. How are we all today?"} -

new_string = "#{short_str}, #{long_str}"

This new string is the result of the
interpolation of the first two strings
into a new object.

the bytesize of this new string is 36,
so we add the extra header and

{::sztizfﬁ;éﬁé,HEEEHZ:E;;zBéne we all today?"} :i;l . .
terminator and we get a total object
size of 53 bytes.
so why is it in the 40 byte bucket

short_str = "hello"

{"embedded":true, "slot_size":40, "bytesize":5,)

"value":"hello"} =
And the lack of an embedded flag

long_str = "Friends. How are we all today?" . .

{"embedded":true, "slot_size":80, "bytesize":29, meanS that thIS Strlng haS been

"value":"Friends. How are we all today?"} o .
created as an extended object.

new_string = "#{short_str}, #{long_str}"

{"bytesize":36, "slot_size":40, k3

T

"value":"hello, Friends. How are we all today?"}

short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5, L
"value":"hello"} -
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29, -
"value":"Friends. How are we all today?"} -

new_string = "#{short_str}, #{long_str}* Y U NO EMBEDDED?

Why was this not allocated as an
embedded object in the 80 byte
bucket?

{"bytesize":36, "slot_size":40, bdl
"value":"hello, Friends. How are we all today?"} L
This was definitely a bug.
short_str = "hello"
{"embedded":true, "slot_size":40, "bytesize":5, -
"value":"hello"} —
So | set out to try and find it.
long_str = "Friends. How are we all today?"
{"embedded":true, "slot_size":80, "bytesize":29, -
"value":"Friends. How are we all today?"} =

new_string = "#{short_str}, #{long_str}" Y U NO EMBEDDED?

{"bytesize":36, "slot_size":40, o)
"value":"hello, Friends. How are we all today?"} bt

$ ruby test.rb

And the first thing | did was to look
at exactly what the Ruby VM is
doing when it executes that code.

$ ruby --dump=insns test.rb

| ran the code again, using the
dump insns option, to will parse and
compile our code, but stop short of
actually executing it

== disasm: #<ISeq:<main>@test.rb:1 (1,0)-(4,40)> (catch: false)

local table (size: 3, argc: O [opts: @, rest: -1, post: O, block: -1, kw: -1@-1, kwrest: -1])

[3] short_str@d[2] long_str@El [1] new_string@2

Instead it's going to print out the
bytecode to the screen so we can

@ are we st HE])H see what's going on. This is a list of
o e all the instructions the Ruby VM wil
ne execute, one after the other, to run
Conltstatnioto_s, aroc:0, FEALLIARGS STHPLE> the string interpolation code |
v showed on the previous slides

First Ruby takes our short string
A hello, which because it's static, is

defined right inside the parser
output, and pushes it onto the
stack, and then uses the set local
instruction. Which pops it straight
off the stack and assign it to a local
variable short_str

0004 putstring
0006 setlocal _WC_0

"Friends. How are we all today?"(2)[Lil]
long_str@l

Then does the same thing with the
long string, taking the string directly
from the parser output and using
set local to assign it directly to a
local variable.

0008 getlocal_WC_0
0010 dup

0011 objtostring
0013 anytostring
0014 putobject
0016 getlocal_WC_6
0018 dup

0019 objtostring
0021 anytostring
0022 concatstrings

short_str@e C 4)[Li]

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

long_str@El
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

3

Next, This block is what actually
performs the interpolation

0024 dup
0025 setlocal_WC_0
0027 leave

new_string@2

and finally, the value from the
interpolation gets assigned to a
local variable new_string, again
using the set local instruction.

and then we're done. Our program
exits, returning the newly
concatenated string, which is the
last thing left on the stack.

== disasm: #<ISeq:<main>@test.rb:1 (1,0)-(4,40)> (catch: false)
local table (size: 3, argc: O [opts: O, rest: -1, post: O, block: -1, kw: -1@-1, kwrest: -1])
[3] short_str@d[2] long_str@l [11 new_string@2

0000 putstring
0002 setlocal _WC_O
0004 putstring
0006 setlocal_WC_0
0608 getlocal_WC_0
0010 dup

0011 objtostring
0013 anytostring
0014 putobject
0016 getlocal_WC_6
0018 dup

0019 objtostring
0021 anytostring
0022 concatstrings
0024 dup

0025 setlocal _WC_0
0027 leave

“"hello" ¢ D]
short_str@o

"Friends. How are we all today?"(2)[Li]
long_str@l

short_str@e (4[]

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

long_str@El
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>
3

new_string@2

| don't think the actual local variable
setting code is very relevant, so lets
ignore that for now

0008 getlocal_WC_6
0010 dup

0011 objtostring
0013 anytostring
0014 putobject
0016 getlocal_WC_0
0018 dup

0019 objtostring
0021 anytostring
0022 concatstrings

new_string = "#{short_str}, #{long_str}"

short_str@e ¢ 4Ll

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

long_str@l
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

3

And zoom into the actual
interpolation bytecode.

You can see the Ruby code that this
byte code represents at the top of
the screen here. We have two local
variable substitutions, inside a
string literal.

= 0008 getlocal_WC_O
0010 dup
0011 objtostring
0013 anytostring
0014 putobject
0016 getlocal_WC_6
0018 dup
0019 objtostring
0021 anytostring
0022 concatstrings

new_string = "#{short_str}, #{long_str}"

short_str@o (&)Ll

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

long_str@El
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

3

we start by computing the first
substitution, substitutions can
contain any syntactically valid ruby,
but in this case it's been parsed as
a local variable, so the get local
instruction has been emitted, which
will look up the local value and push
it on to the stack

0008 getlocal_WC_6
0010 dup

= 0011 objtostring
0013 anytostring
0014 putobject
0016 getlocal_WC_0
0018 dup
0019 objtostring
0021 anytostring
0022 concatstrings

new_string = "#{short_str}, #{long_str}"

short_str@e ¢ 4Ll

<calldata!mid:to_s, argc:@, FCALL|ARGS_SIMPLE>

long_str@l
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

3

then we call the to_s method on it

0608 getlocal_WC_0

0010 dup

0011 objtostring
=» 0013 anytostring

0014 putobject

0016 getlocal_WC_6

0018 dup

0019 objtostring

0021 anytostring

0022 concatstrings

new_string = "#{short_str}, #{long_str}"

short_str@d C 4)[Li]

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

long_str@El

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE> hello

3

after that we use this anytostring
instruction, this is just here to make
sure that what we actually push on
to the stack, is a string. for example,
if to_s had been monkeypatched to
return another type, then
anytostring would brute force that
into a string and push it on the
stack

Here on the right, I've tried to
visualise what the stack looks like at
this point in the program.

0008 getlocal_WC_6
0010 dup

0011 objtostring
0013 anytostring

= 0014 putobject

0016 getlocal_WC_0
0018 dup

0019 objtostring
0021 anytostring
0022 concatstrings

new_string = "#{short_str}, #{long_str}"

short_str@o C 4)[Li]
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>
long_str@l

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

3

"hello"

Next we deal with the characters
between the substitution blocks.
This just means pulling out the
comma and the space as a string
literal and pushing it on the stack

0608 getlocal_WC_0
0010 dup
0011 objtostring
0013 anytostring
0014 putobject

= 0016 getlocal_WC_O
0018 dup
0019 objtostring
0021 anytostring
0022 concatstrings

new_string = "#{short_str}, #{long_str}"

short_str@d C 4)[Li]

<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

long_str@l
<calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>

3

"Friends. How are
we all today?"

"hello"

Then we do the same operations we

did for the short string to the long
string, grab the value for the local,
coerce it into a string, first using
to_s and then anytostring, and
pushing the result onto the stack.

new_string = "#{short_str}, #{long_str}"

0008 getlocal_WC_6 short_str@o (4)[Li]
0010 dup
0011 objtostring <calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>
0013 anytostring
0014 putobject "
0016 getlocal_WC_0 long_str@l
0018 dup
0019 objtostring <calldata!mid:to_s, argc:0, FCALL|ARGS_SIMPLE>
0021 anytostring
=» 0022 concatstrings 3

"Friends. How are
we all today?"

"hello"

And finally we use the concatstrings
instruction to pull the 3 strings off
the stack and combine them
together into our new string.

So, seeing as this concatstrings
instruction seems to be what's
doing the actual string building here
lets investigate.

DEFINE_INSN
concatstrings
(rb_num_t num)

(VALUE val)

/* This instruction can concat UTF-8 and binary strings, resulting in
* Encoding: :CompatibilityError. */

// attr bool leaf = false; /* has rb_enc_cr_str_buf_cat() */

// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;

val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num));
i3

"Friends. How are
we all today?"

"hello"

All valid VM instructions are defined
in a file called insns.def inside the
Ruby source code, using a C based
DSL.

During the compilation stage of the
Ruby interpreter, this DSL is
processed, to generate C functions
for each instruction that get linked
into the VM Core.

Having them initially in this DSL
form, gives them some structure
that makes them easy to read and
reason about. Every instruction
starts with a call to the
DEFINE_INSN macro.

Every instruction starts with a call to
the DEFINE_INSN macro.

= DEFINE_INSN
concatstrings
(rb_num_t num)

(VALUE val) "Friends. How are
/% This instruction can concat UTF-8 and binary strings, resulting in we all today?"
% Encoding: :CompatibilityError. */
// attr bool leaf = false; /* has rb_enc_cr_str_buf_cat() */ "o
// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;
{

val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num)); "hello"

And that is then followed by the
name of the instruction

DEFINE_INSN
= concatstrings
(rb_num_t num)

(VALUE val) "Friends. How are
/* This instruction can concat UTF-8 and binary strings, resulting in we all today?"

* Encoding: :CompatibilityError. */
// attr bool leaf = false; /% has rb_enc_cr_str_buf_cat() x/ w,om
// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;

val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num)); "hello"

DEFINE_INSN
concatstrings
= (rb_num_t num)
..
(VALUE val)
/% This instruction can concat UTF-8 and binary strings, resulting in
% Encoding: :CompatibilityError. */
// attr bool leaf = false; /* has rb_enc_cr_str_buf_cat() */
// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;
{

"Friends.

How are

we all today?"

and a list of valid parameters and
their types

then the list of values this
instruction will pop off the stack, in
Pl this case the ellipsis means this is
> variadic - it can be an arbitrary

/* This instruction can concat UTF-8 and binary strings, resulting in
* Encoding: :CompatibilityError. */

// attr bool leaf = false; /x has rb_enc_cr_str_buf_cat() */

// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;

val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num));

we all today?"

"hello"

length list

next we have the list of values that
will be pushed back onto the stack

DEFINE_INSN
concatstrings
(rb_num_t num)

= (VALUE val) "Friends. How are
/* This instruction can concat UTF-8 and binary strings, resulting in we all today?"
% Encoding: :CompatibilityError. */
// attr bool leaf = false; /* has rb_enc_cr_str_buf_cat() */ .o
// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;
{

val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num)); "hello"

+

then some attributes, which I'm
going to gloss over, as they're not
Pl important for our purposes in this

(rb_num_t num)

(VALUE val) "Friends. How are talk.

/* This instruction can concat UTF-8 and binary strings, resulting in we all today?"
* Encoding: :CompatibilityError. */

= // attr bool leaf = false; /* has rh_enc_cr_str_buf_cat() */
// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;

val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num)); "hello"

DEFINE_INSN
concatstrings
(rb_num_t num)

(VALUE val)

/% This instruction can concat UTF-8 and binary strings, resulting in
% Encoding: :CompatibilityError. */

// attr bool leaf = false; /* has rb_enc_cr_str_buf_cat() */

// attr rb_snum_t sp_inc = 1 - (rb_snum_t)num;

{

-> val = rb_str_concat_literals(num, STACK_ADDR_FROM_TOP(num));
4

"Friends. How are
we all today?"

"hello"

and finally the body of the
instruction. This is the code that will
be executed whenever the VM gets
to a concatstrings instruction in a
bytecode listing.

In this case, uses the num
parameter passed in as an
argument to the stack add from top
macro to grab the top 3 elements
from the stack and pass them as
parameters to a ¢ function
rb_str_concat_literals, which is
going to return a value

rb_str_concat_literals(size_t num, const VALUE *strary)
{

VALUE str;
size_t i, s;
Tong len = 1;

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[il); }
if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {
str = rb_str_resurrect(strary[0]);
s=1;
3
else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[0]);
s =0;

Go=s; i<num ++1) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);
rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

eturn str;

this is the rb_str_concat_literals
function, and at first glance, it's sort
of split into two halves

the first half, where we build a string
object that will eventually be

) { len += RSTRING_LEN(strary[i]); }
)L

for (i=0; i<num; ++i
if (LIKELY(len < MIN_PRE_ALLOC_SIZE
i et st returned
=17 - - — -
3 s Build a new string object in the str variable
else {
str ®FB_str_buf_new(len);

rb_enc_copy(str, strary[6]);
s = 0;

}
and the second half, where we
loops through the array passed in,
appending those strings one by one
onto the initial string we've defined
e in the first half
FN i T
rb_str_buf_append(str, V)i Append each string in turn onto our starting string
i i?“?EﬁcéExigféggfﬁ'ﬁaéﬁﬁiﬂ){:: ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);
}
}

but this first half is kind of weird

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[il); }
if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {
str = rb_str_resurrect(strary[0]);
s =1;
T
else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[6]);
s = 0;

i

it loops through the array of strings
we've passed in to calculate the
total length of the interpolated string

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[il); }

And then it branches

if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {
T
else {

i

on this weird magic number,
MIN_PRE_ALLOC_SIZE, which is 48

if (LIKELY(len < MIN_PRE_ALLOC_SIZE3ge{
} What is MIN_PRE_ALLOC_SIZE for?|
else { And why is it 48?2

+

if the length is less than 48, then it
calls this rb_str_resurrect thing,

str = rb_str_resurrect(strary[0]);
s =1;

What does rb_str_resurrect do?
(Why do we need it?

which eventually sets our base
string to be the first string in the

str = rb_str_resurrect(strary[0]); array
s =1;
\ str ends up being set to this first array element]|

(What does rb_str_resurrect do?
Why do we need it?

/Why aren't we just always doing this?
str = rb_str_buf_new(len);

rb_enc_copy(str, strary[6]);
s = 0;

however, if the length is longer than
48, it allocates a completely new
string of the right size. | don't know
why we're not just always doing this

for (i = s; i < num; ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);
rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);
+
T

when the second half of the
function loops through the string
array, it starts from either

s = 0;
<\-lstart from the beginning of the array|

for (1 = s; i < num; ++1) {
const VALUE v = strary[il;
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

the first, or

the second element, depending on
which branch we took in the first
half of the function

Start from the second element|

for (i =s; i < num; ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);
+
T

at this point | was pretty confused. |
could not explain why we had to
branch in this function, what the
purpose of the string resurrection
path was, what
MIN_PRE_ALLOC_SIZE was
supposed to represent or what the
significance of the number 48 was.

But this does explain our bug

However | had spotted the bug.

So we have these 3 strings. The
total length of their data is 36 bytes.

Hello . Friends. How are we today? ThiS iS leSS than the

Fovtes e MIN_PRE_ALLOC_SIZE of 48, so
we'll go down the string resurrect
path. Meaning we'll use our first
TN PRE_ALLOG.STZE = 4 string as a base

and as this string is in the 40 byte
size pool

Hello . Friends. How are we today?

40 byte bucket

MIN_PRE_ALLOC_SIZE = 48

when we start appending things to
it

Hello, Friends. How are we today?

40 byte bucket

MIN_PRE_ALLOC_SIZE = 48

it'll quickly push past the boundary
of the 40 byte size pool, causing
Ruby to convert it to an extended
object

Hello, Friends. How are we today?

40 byte bucket

MIN_PRE_ALLOC_SIZE = 48

40 byte bucket

1

Hello, Friends. How are we today?

MIN_PRE_ALLOC_SIZE = 48

So we end up with an extended
object in the 40 byte size pool,
rather than the embedded 80 byte
object we were expecting.

Cool. So we found our bug. Now |
wanted to find out why that code
even exists.

$ git log -S MIN_PRE_ALLOC_SIZE

| broke out the git pickaxe, that is
git log -s, to find the commit that
had first introduced this magic
number

commit 80c50308f9db813e999367ec5d116e2d2be9f840
Author: nobu <nobu@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>
Date: Sat Oct 21 23:21:05 2017 +0000

Improve performance of string interpolation

This patch will add pre-allocation in string interpolation.
By this, unecessary capacity resizing is avoided.

For small strings, optimized ‘rb_str_resurrect’ operation is
faster, so pre-allocation is done only when concatenated strings
are large. "MIN_PRE_ALLOC_SIZE' was decided by experimenting with
local machine (x86_64-apple-darwin 16.5.0, Apple LLVM version
8.1.0 (clang - 802.0.42)).

and it led me to this optimisation,
originally written by Minami Nao, and
committed by nobu , in 2017

commit 80c50308f9db813e999367ecS5d116e2d2be9f840
Author: nobu <nobu@b2dd03c8-39d4-4d8f-98ff-823fe69h080e>
Date: Sat Oct 21 23:21:05 2017 +0060

Improve performance of string interpolation

This patch will add pre-allocation in string interpolation.
By this, unecessary capacity resizing is avoided

For small strings, optimized “rb_str_resurrect’ operation is
faster, so pre-allocation is done only when concatenated strings
are large. "MIN_PRE_ALLOC_SIZE® was decided by experimenting with
local machine (x86_é64-apple-darwin 16.5.8, Apple LLVM version
8.1.0 (clang - 802.0.42)).

He talks about of rb_str_resurrect
improving performance for small strings

commit 80c50308f9db813e999367ec5d116e2d2be9 840
Author: nobu <nobu@b2dd03c8-39d4-4d8f-98ff-823Fe69h080e>
Date: Sat Oct 21 23:21:05 2017 +0060

Improve performance of string interpolation

This patch will add pre-allocation in string interpolation.
By this, unecessary capacity resizing is avoided.

For small strings, optimized "rb_str_resurrect’ operation is
faster, so pre-allocation is done only when concatenated strings

are large. ~MIN_PRE_ALLOC_SIZE® was decided by experimenting with

local machine (x86_64-apple-darwin 16.5.0, Apple LLVM version
8.1.0 (clang - 802.0.42)).

and confirms that yes,
MIN_PRE_ALLOC_SIZE really is just a
magic number

this was 6 years ago, maybe this
optimisation isn't needed anymore.

WaPming Up =-==-n======smmmsmmmsmememsmemnmaeas
Large string interpolation
838.029k i/10@ms
small string interpolation
1.005M i/100ms
Caloulating =-=-=========-=om=osomeooeooooooos
Large string interpolation
8.378M (+ 0.4%) i/s - 41.901M in 5.001586s
small string interpolation
9.986M (+ 1.4%) i/s - 48.687M in 5.832134s

Thankfully Nobu included some
benchmark code in the commit
message, which | ran.

WaPming Up = ------=-==--=-sosmmseocoooooooooos

Large string
Small string

Calculating
Large string

Small string

WaPming Up = --=---=-==--==smsmmzeosmocooaoooos

Large string
Small string

Calculating
Large string

Small string

interpolation
838.029k 1/100ms

interpolation
1.005M i/100ms

interpolation

8.378M (¢ 0.4%) i

interpolation
9.986M (+ 1.4%)

interpolation

830.029k 1/100ms
interpolation
890.196k i/100ms

interpolation

8.382M (+ 0.5%) i

interpolation
8.897M (+ 0.4%)

41.901M in

48.687M in

42.331M in

44.510M in

5.001586s

5.032134s

5.050340s

5.003121s

and then ripped out the entire
optimisation, so we always pre-
allocate in the correct bucket and
ran it again.

Warming Up ===---=========nn==smmsmmmneeeooeees

Large string
Small string

Calculating
Large string

Small string

WaPming Up - ------=-n=-mmsnossmsnoconoooooioos

Large string
Small string

Calculating
Large string

Small string

interpolation
838.029k i/10@ms
interpolation

1.005M i/100ms

interpolation

8.378M (+ 0.4%) i

interpolation

9.986M (+ 1.4%) i

interpolation
830.029k i/106ms
interpolation

890.196k i/108ms

interpolation

8.382M (+ 0.5%) i

interpolation

8.897M (x 0.4%) i

41.901M in

48.687M in

42.331M in

44.510M in

5.0015865

5.032134s

-8.58%

5.08503405

5.003121s

a({({

But removing the optimisation
slowed down short string
interpolations by nearly 9 percent.

So it looks like we still need this
optimisation

It's just super frustrating that it's not
creating the strings in the right
place

{"slot_size":40, "bytesize":36,
"value":"hello, Friends. How are we all today?"}

So | tried to fix the bug within the
scope of the optimisation

if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {

if (rb_gc_obj_slot_size(strary[0]) == rb_gc_slot_size_for_size(len)) {

| changed the conditional, so that
instead of taking the optimisaed
path only for strings that are shorter
than the min prealloc size, we'd
instead take the optimised path in
the case where the final interpolated
string still fits in the same size pool
as the original string, to avoid the
allocation penalty that comes from
converting an embedded string to
an extended one.

) ruby test.rb
Warming Up == -========msmmmsmmmsmsmemememennaees
Large string interpolation
830.591k i/100ms
Small string interpolation
987.599k i/106ms
Caleulating =----=----=-sosomsosomaosooaoiooos
Large string interpolation
8.358M (+ 0.5%) i/s - 42.360M in 5.868407s
Small string interpolation
9.849M (+ 0.4%) i/s - 49.380M in 5.013933s

and | ran the benchmarks again

) ruby test.rb
WaPMANG UP == - === om oo oo oo
Large string interpolation
830.591k i/108ms 1%
Small string interpolation
987.599k i/100ms
Caleulating -----=--smmmsmmsoomoomiaoiios
Large string interpolation
8.358M (+ 0.5%) i/s - 42.360M in 5.068407s Target: 41.901M
small string interpolation
9.849M (x 0.4%) i/s - 49.380M in 5.013933s Target: 48.687M

-1.2%

This time the performance numbers
were much closer. There was still a
small amount of variance, but these
numbers are much closer. Nowhere
near the large 9% performance drop
we saw by removing the benchmark
entirely

These smaller regressions could
probably be explained away due
benchmarking noise - | was working
on my laptop at the time, as well as
the subtle change we made to the
optimisation condition

"address" :"0x104f255F8"
ING",

:80,
10394ed88" ,

true,

36,

o, Friends. How are we all today?",
"UTF-8",

:"7bit",

But at least our code is correct now,

"address" : "0x104f255f8"
“"type": "STRING"

"shape_id":1,
" 80,
0394ed8s",
rue, Embedded.

6,
e":"hello, Friends. How are we all today?",
“encoding": "UTF-8",

"coderal "Tbit",
"memsiz '
"flags" wb_protected":true }

the string is embedded

{ Correct Bucket]

":"hello, Friends. How are we all today?",
"encoding":"UTF-8",
"7bit",

wb_protected":true }

in the correct size pool, so our bug
is fixed.

Time to ship right.

But let's not rush ahead.

Why can't we always allocate in the
correct size pool

Why can't we just always allocate a
new string in the correct size pool.
Why does the use of
rb_str_resurrect cause a 9%
performance improvement, when
used on arbitrarily small strings.

Despite fixing the bug, | still wasn't
really satisfied with the conclusion.

VALUE
rb_str_resurrect (VALUE str)
{

RUBY_DTRACE_CREATE_HOOK(STRING, RSTRING_LEN(str));
. str);

return str_duplicate(rb_cString
+

Returns a duplicate of str|

especially as on closer inspection
rb_str_resurrect duplicates the
string

static inline VALUE
str_duplicate(VALUE klass, VALUE str)

VALUE dup; Allocation happens in both branches|
if (FL_TEST(str, STR_NOEMBED)) {

dup = str_alloc_heap(klass);

T
else
dup = str_alloc_embed(klass, RSTRING_EMBED_LEN(str) + TERM_LEN(str));

return str_duplicate_setup(klass, str, dup);

which does an allocation, so it can't
be allocation that's slowing us
down, which was my initial
hypothesis for the slowdown.

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[il); }
if (rb_gc_obj_slot_size(strary[0]) == rb_gc_slot_size_for_size(len)) {
str = rb_str_resurrect(strary[0]);

s =1;
}
else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[0]);
s = 0;
. [

So | took a closer look at the
allocation path

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[i]); }

if (rb_gc_obj_slot_size(strary[0]) == rb_gc_slot_size_for_size(len)) {
str = rb_str_resurrect(strary[0]);
s = 1;

else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[0]);
s = 0;

¥

And noticed that it seems to be
doing some extra work compared to
the string resurrect path.

Once the new string is allocated, we
copy the encoding from the string at
the head of the array into the new
string we've just created.

rb_enc_copy(str, strary[0]);

But to do that, it uses a public
function, called rb_enc_copy, from
Ruby's C API.

Because this is public, it can be
used from C extensions. Which
means that effectively, this function
has to deal with user input, it cannot
make assumptions about the
validity of it's parameters.

And to that end it does a lot of
safety checks on the String that's
being passed in.

+ String frozen?
- Encoding index in range?
« String terminator lengths the same?

Things like checking whether the
string is frozen, the encoding index
is in the correct range, or that the
terminator lengths are the same.

U+1F62D: LOUDLY CRYING FACE

(AN

=) o

*\ud83d\ude2d”
ape | "\ud33d\ude2d”

uTF8 0 9f 98 ad

UTF16 483d de2d

| benchmarked the code again, and
sure enough encoding, or rather the
method of encoding, was exactly
our problem.

str = rb_str_resurrect(strary[0]);

the string resurrection code skips
safety checks when it sets up the
encoding of the duplicated string
because it knows exactly what it's
duplicating from and into.

rb_str_concat_literals(size_t num, const VALUE *strary)
{

VALUE str;
size_t i, s;
long len =

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[il); }
if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {
str = rb_str_resurrect(strary[0]);
s =1;
T
else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[6]);
s = 0;

i

for (i = s; i < num; ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

b

return str;

But we don't need these safety
checks in the string concat literals
function

or (i = 8; i < num; ++i) { len += RSTRING_LEN(strary[il); }
if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {
str = rb_str_resurrect(strary[0]);
s =1;
3
else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[0]);
s=o0;

+

Because after we've set up our
target string,

for (i = s; i < num; ++i) {

i

const VALUE v = strary[i];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

b

and moved into our loop appending
into this new string

for (i = s; i < num; ++i) {

i

const VALUE v = strary[i];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);
}

We overwrite the encoding anyway!?|

In most cases we just overwrite the
encoding of the final string anyway.

(These are pre-processed using to_s

for (i = s; i < num; ++i)

i

const VALUE v = strary[1];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCIT) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

i

and as the strings we're looping over
have already been pre-processed (by
calling to_s on them), we can be
confident that they have passed these
checks.

i

str = rb_str_buf_new(len);
We literally create this here!

Go=s; i<num ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);
}

Additionally our destination string is a
also a completely known quantity, we
literally just created it in this function

we can afford to be less strict with our
safety check

$ git log --grep str_enc_copy

When | went to research about the
history of this function

Add str_enc_copy_direct #7106

@ Conversation 0 o Commits 1

L Checks %0

| found that, serendipitously, Peter
had already run into a case where
these safety checks had impacted
performance of other string
functions just a few days earlier.

static inline void
str_enc_copy_direct (VALUE strl, VALUE str2);

And his solution was to introduce a
private function
str_enc_copy_direct, which sets up
the encoding, but skips all the
safety checks that are part of the
public api, so it's much faster.

rb_str_concat_literals(size_t num, const VALUE *strary)
{

VALUE str;
size_t i, s;
Tong len = 1;

for (i = 0; i < num; ++i) { len += RSTRING_LEN(strary[il); }
if (LIKELY(len < MIN_PRE_ALLOC_SIZE)) {
str = rb_str_resurrect(strary[0]);
s=1;
3
else {
str = rb_str_buf_new(len);
rb_enc_copy(str, strary[0]);
s =0;

+

for (i = s; i < num; ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);
rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

T
return str;
13

so let's try this refactor again.

rb_str_concat_literals(size_t num, const VALUE *strary)
{

VALUE str;
size.t i, s = 0;
Tong len = 1;

str = rb_str_buf_new(len);
rb_enc_copy(str, strary[6]);

for (i = s; i < num; ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);
rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);

We'll rip the whole conditional out,
so that we always pre-allocate, this
gets rid of our magic number.

str = rb_str_buf_new(len);
str_enc_copy_direct(str, strary[0]);

for (i =s; i < num; ++i) {
const VALUE v = strary[i];
int encidx = ENCODING_GET(v);

rb_str_buf_append(str, v);
if (encidx != ENCINDEX_US_ASCII) {
if (ENCODING_GET_INLINED(str) == ENCINDEX_US_ASCII)
rb_enc_set_index(str, encidx);
+

return str;

T
T
return str;
13
En,s::;::nc:tjuterals(size,t num, const VALUE xstrary) but thiS time WeI ” use the |eSS Safe
szt s =0
long len = 1;

but faster internal api for encoding

And | like this code a lot better now.
The complexity is reduced, the
magic number is gone, and in my
opinion at least, it's easier to read
and reason about.

<
“address" : "0x1042558"
“type": "
"shape
"slot_

"class’ d88",
“embedded" . Embedded.
“bytesize"

"value":"h
“encoding"
“coderange!
"memsize":
"flags": { "wb_protected":true }

, Friends. How are we all today?",

This fixes the original bug, so
interpolated strings will always be
embedded in the correct sized
bucket.

) make benchmark ARGS="benchmark/string_concat.yml --filter size_pool"

compare-ruby: ruby 3.3.0dev (2023-01-13T08:25:09Z master 94dédé6d93f) [x86_64-1inux]
built-ruby: ruby 3.3.0dev (2023-01-13T14:30:47Z mvh-string-interpo.. 32c1e06f12) [x86_64-1linux
warming up..

Iteration per second (i/s)

| compare-ruby |built-ruby|

|
: | : :
|interpolation_same_size_pool | 5.998M| 11.971M|
| -1 2.00x|
|interpolation_switching_size_pools | 7.806M| 8.982M|
| | -1 1.15x|

We took Nobu's original benchmark
and incorporated it into the CRuby
benchmark suite, to make it more
repeatable and consistent, And
when we compared this new patch
with the original code we saw that

|)

| in%e! \ﬁlatioﬁ tching_size_pools
| QQ rr\

9 >

&

) make benchmark ARGS="benchmark/string_concat.yml --filter size_pool"

compare-ruby: ruby 3.3.0dev (2023-01-13T08:25:09Z master 94d6d6d93f) [x86_64-linux]

built-ruby: ruby 3.3.0dev (2023-01-13T14:30:47Z mvh-string-interpo.. 32c1e06f12) [x86_64-1linux

warming up..
Iteration per second (i/s)

compare-ruby|built-ruby|
|interpolation_same_size_pool

----------- R
5.998M| 11.971M|

- 2.00x|

7.806M| 8.982M|

2x!!

-1 1.15x|
- 1.15x11!

we've doubled the performance of
interpolations within the same
bucket, and improved the
performance of interpolations that
cross a bucket. This is a fantastic
result.

We removed 8 lines of code

and all this by removing 8 lines of
code

And these improvements made their
way into Ruby 3.3, and now the
string interpolation code is faster
and cleaner than before.

@ Ruby 3.3
| hope you enjoyed this story. I'd
love to tell you that | have some
groundbreaking conclusions to
share, but | don't really. This was
Conclusions?

just a debugging war story, that |
had a load of fun with.

But, that being said, I'd still like to

leave you with a few thoughts,
followed by a Thank you.

Small changes can have big impacts

The first is that small changes can
often have big impacts. This applies
to our little patch certainly, | wasn't
expecting the removal of 8 lines of
code to result in a 2x speedup.

Any Unexpected
Smallchanges can have bigimpacts

But the real message here is that
any change can have unexpected
impacts.

When we initially merged the
Variable Width Allocation work
originally, we hadn't anticipated that
a 7 year old optimisation would be
responsible for a bug in a very
specific part of string interpolation
and that removing the optimisation
would have such huge impact.

Unexpected impacts like this, are
not something that can necessarily
be mitigated, but instead we should
treat them as a learning opportunity.

So I'd like to give you some
unsolicited advice.

Always question your assumptions

Which is, always question your
assumptions. It would have been
very easy for me to have stopped at
the first step here. Simply assuming,
that because I'd seen the massive
performance jump in the
optimisation path, that it was
absolutely still relevant and that all |
needed to do was to make the
smallest change in order to fix my
specific bug.

But at this point | still didn't have an
answer to my question: why
couldn't we allocate the correct size
string up front.

Which leads on to my next point

Don't be afraid to dig into things

Don't be afraid to dig into things
you don't understand yet, or can't
explain. Follow your curiosity and
see where it leads.

| probably would have stopped at
the first change if | didn't have a
burning desire to answer my
question, why couldn't we just
allocate the correct size thing up
front.

And it turns out that we can, we just
needed to think about things in a
slightly different way to the author
of the original optimisation.

And this diversity of thought is
valuable. The more people inquiring
minds who are questioning
assumptions and delving into things

they don't understand will result in
more opportunities to make positive
changes.

Thanks Minami Nao & Nobu

Now | want to say a big Thank You.
First to Minami Nao, the author of
the original optimisation for writing
such a detailed commit message.

And also to Nobu, for preserving it.
For not squaring the commits down
during the merge, and instead
preserving that excellent
documentation.

Why was the change important?
What was being achieved?

How do we verify?

Seriously, This change would have
been a lot more arduous to make
and test were it not for those
detailed notes. Minami san
summarised exactly why the
change was important, what he was
trying to achieve, and perhaps most
importantly, how he verified that it
worked.

As someone coming into this code
for the first time, and trying to
decipher why it was behaving oddly,
this was worth it's weight in gold.

Building Ruby is fun.

So, what I'm trying to say really is -
Working on Ruby is a lot of fun. It's
rewarding and it can teach you a lot.
And | would really encourage
anyone in the audience who hasn't
tried contributing to Ruby before to
get out there, explore the codebase,
experiment, and to learn.

And above all else have fun.

Thanks! ¢

And that's all I've got, thanks for
listening.

